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ON MAXIMUM ENTROPY SIGNAL ANALYSIS
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Summary

) Maximum entropy signal analysis (MESA) provides a method of deriving
the auto power spectrum from a discrete number of time series data; the
method is reputed to be superior to Past Pourier Transform (FFT)
analysis when applied to short data records in that better resolution is
obtained and sidebands are reduced.

In order to investigate the efficacy of this method MESA has been
implemented oh computer controlled spectrum analysis systems and a
number of simple spectra have been examined. It is concluded that MESA
offers no advantages when large data records are available since the
quality of the spectra is poor and long computation times are required.
Purthermore the method produces highly variable absolute levels. However
if only short data records are available then provided a suitable
sampling frequency is chosen MESA does provide a reasonable weans of
producing the power spectrum. -
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GLOSSARY OF TERMS

amn (n+l)the coefficient of the m+l long prediction error filter.
E Expectation value
£ Prequency
PPE Final Prediction Error
H Entropy
. N Number of data points
q M+l Order of prediction error filter
P(£) Powexr spectrum
Pp Power output by (w+l)th order prédiction error €filter
R Measured values of auto-correlation function
R(t) True values of auto—correlation function
S(£f) Linear spectrum
t Time
T Time period of data sample
A At Time period between data points .
wt) Weighting function
. x(t);(Xy) Time series data (digitised)
i
?
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&
;

R e -t




1. INTRODUCTION

Spectral data is generally analysed by means of the auto-power
spectrum P(£f) of the signal. This is conventionally determined from the
measured time signal x(t) by means of the Fourier Transform:

TIME AUTO CORRELATION FUNCTION
SPECTRUM ————>

x(t) lim

R(t) = 2B '.rl- J' X(T)x(T+t) At

i) PILTER W(t) i) PILTER W(t)
ii) FOURIER TRANSFORM ii) POURIER TRANSFORM

LINEAR SPECTRUIM -———> AUTO POWER SPECTRUM

CS(f) = P[x(t)] P(f) = P[R(t)]
= Plx(t)W(t)] = P{(R(t)W(t)] 1in practice
in practice. - s(f)s*(f)

In practice the time series data are measured within some finite
time interval and the analysis assumes data outside this interval to be
zero. To reduce the error introduced by this assumption the available
data is generally treated by some weighting function W(t) such as the
Hanning function.

Maximm entropy spectral analysis (MESA) provides an alternative
method for determining the power spectrum P(f) from the available data
without such modification. In principle the method provides a means of
extending the sampled data x; (i&N) beyond the measurement window (i.e.
to 1>N) by taking a weighted sum of the known data. The weighting
function is known as the Prediction Error Filter and (as shall be
explained fully later) is determined by minimising the error power
output from a least wmean square fit of the measured and 'predicted’
data.

The method was first developed by Burg [1) and involves the
maximisation of the ‘entropy’' H of the system with respect to the power
spectrum subject to constraints imposed by the measured data. The method
i’ reported to have had much success in improving the power spectrum in
that i) better resolution is obtained ii) sidebands are reduced and iii)
more realistic power estimates are produced, particularly for short data
records (see for example (1] and (2]).

In oxder to investigate the claims and assess the potential of the
method for use on machinery ncise data MESA has been implemented on two
analysis systems (the GENRAD 2508 Signal analysis system and the Hewlett
Packard 5423A Spectral dynamics analyser used un conjunction with the HP
9845 desk top computer) and has been used to analyse several simple
spectra.
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f The concept of entropy as used in MESA was originally derived from
! the field of information theory. The entropy of a system is the average
rate of information conveyed and is given by

n
; H = [ P. In(p.) 1
| jup i

where p; is the probability that the ith event of n possible events
i occurs.

Prom equation 1 it can be seen that the entropy is minimised when
the probabilities p; are equal, i.e. when the system is most ordered.
The application of the concept of entropy to spectral analysis therefore
involves the minimisation of the entropy for a stationary Gaussian
process which has been shown (1,2,3] to be proportional to

uajmp(f) as 2

where P(£) is the power spectrum and must be consistent with the
measuredq values of the auto—correlation function (assuming these to be
% -" known exactly).

The minimisation procedure is described in Appendix 1 and results in
the following expression for the power spectrum:

B 4t
P(E) = - 3
1-¢ a_ exp(-2mifnst) 2
net

where At is the time interval between sampled data points, Py is the
power output by the prediction error filter of order m+l having elements
:.‘ ann; these elements are the solutions to the equation

Ro Rl N

Rlll ..

R ° 1l P
m m
l?.m___1 -al o
. - . 4
Rll Rm—l <. Ry -an o

where R; are the measured values of the auto-correlation function.

W e

- This analysis is performed on the assumption that the values
Rg ( = ry.4 = T3y = E(x34 xq] ) of the auto correlation function are
exactly known. However, in practice Ry are determined from truncated
sampled time series data x; whence Ry are no longer exact but are given

by
gk - -1_ zu_k X x L)
N 1=1 1 Ti+k

Now, by considering the final row of 4 it can be seen that Ry can be
expressed in terms of the prediction arror filter coefficients and

TR ey P g,
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3 preceeding values of the auto—correlation coefficients:

. k

B ri-l B-i 24 6

Burg (4] proposed a means of obtaining more realistic values of Ry
by iterating values for the filter coefficients by successive
incrementation of the dimension of the filter. (It is convenient at
this stage to redefine the elements aj as any where m refers to the
number of iterations performed. ) This method is based essentially on a
least squares fitting of the true data to the output of the prediction
error filter. Consider, for example, the two point prediction error
filter

5

In effect, this filter serves to 'predict' the (i+l)th value of the
data xj,i(pred) from the ith measured value x; by setting xj,j;(pred) = [
ay1X5. In order to obtain the ‘'best’ value of ay; the filter is scanned F
along the data sample and a least squares fit is performed between the ;
measured and predicted values to determine the value of a;; which
minimises the ‘error’' P;. In order to ensure that the resulting filter 1
is stable, it is required that the coefficients ajy should be less than
unity. To satisfy this criterion Burg [4] suggested that the forward
power output of the filter should be averaged with the power output by
the filter operated in reverse:

i o

reverse. f
Py 1 Porward filter s |-~ 1 - |
1 x red = a__x L N l
141F 1151
xt xz x3 x4 xN-Z xN—l xﬂ %
i [ i s !
|-1- - ;1;- < Backward filter l 1 au
----- x;pred = a,,%1 A
Thus
N-1
P o= 3{(8 -ax)2+(x-ax )2} 7
1 2(N-1) et i+t 1171 i 11 i+
dpl
Minimising P with respect to a__: =0
1 11 da.u
N-1
2 C X, X
im1 1 Tiv
wvhence a,=
N-1 2 2
L (x, + x )
{m1 i i+1
2
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The prediction error filter could become more accurate on increasing
the number of data points incorporated in the estimate resulting in an
increased filter length. The procedure for calculating a new set of
filter coefficients on incrementing the filter length is described in
Appendix 2. In general we find the coefficients through the recursion
relation

Ak " %;-1x " Zm %n-1 mk kem 9

with ay, being derived from preceeding coefficients and the original
data

A recursion for the error power output can also be derived (Appendix
3) and is given by

2

Pm = p " (1-a ) 10
where, from 4 and 5
N
1 2
Po Ro —N }'_‘i'l xi 11

Returning to the expression for the power spectrum, equation 3,it
can be seen that knowing the elements Ay and the error power output Py
the explicit derivation of the auto-correlation coefficients becomes
unnecessary and solution of 4 and 6 can be by-passed.

The choice of length for the prediction error filter still appears
to be a matter of concern. Too short a filter results in smoothing of
the data while too long a filter causes unwanted gplitting of the peaks.
Three criteria are available for choosing the length of the filter
[6,7]:

i)Rinal Pxediction Exxox (FPE) Criterion ) }

This procedure was proposed by Akaike (8,9] and consis!_:s of
determining the filter length M for which the FPE = z((xt-xt)zl is -4
minimised. It is shown that i

(N+m+l)

P 12

PPE(m) = . }

(N—-m-1)
should be minimised.

ii) Information Theoretic Cxriterion (AIX)

This is based on the minimisation of the log liklihood of the
prediction erxrror variance

|
AIC(m) 1n P- + - 13




iii) Aytoreqgresgive Transfer Function CGriterion (CAT)

This is based on minimising the difference between the mean square
errors of the eastimated and true filters:-

1 N-m N-M
CAT(M) ~ ¢~ L NP NP

e={ m m

14

The first of these methods, viz the PPE criterion, has been most
widely used in the literature and was adopted in this assessment.

Ulrych and Bishop [2] recommend M=N/2 as a generally suitable filter
length; however, from the point of view of computer time a shorter
filter is preferable.

4 COMPUTER PROGRAMS

MESA has been implemented on both the GENRAD 2508 Signal analysis
system (Time Series Language, TSL) and on the HP9845 desk top computer
(BASIC) used in conjunction with the HP 5423A Spectral Dynamics
Analyser. Pigure 1 shows the overall structure of both programs while
Pigure 2 shows the algorithm used for determining the power output Pj
and the filter coefficients an,,. In both cases the FPE is plotted as a
function of m to allow the user to assess the length of the filter used;
this length can be changed if required before going on to determine the

power spectrum.

On running the program on the GENRAD the levels of the power spectra
exhibited high variability; this was initially attributed to rounding
erroxrs incorporated in the TSL software. Since the method is
particularly sensitive to such errors the majority of plots presented in
this study were derived using the Hewlett Packard system where the
increased precision available would minimise their effect. However (as
described in the next section) the amplitudes were still found to vary
considerably.

5. ANALYSIS PERFPORMANCE

The MESA method was tested on various signals including
1) Pure sine wave (lv rms, 50H2)
ii1) Two adjacent sine waves (lv rms, SOHz; 1lv rms, 49Hz)

1ii) Square wave (1lv s, 1OHz)
iv) Typical sachinery noise .

i)lv SOHz sine wave

This simple case was explored fairly extensively with the sampling
frequency, number of data points and number of iterations being varied.

The general observations from this investigation were as follows:

a) A two point error filter (M=l) was incapable of producing a
suitable spectrum.
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b) One iteration (M=2) was sufficient to produce a peak in the
spectrum; increasing the number of iterations did not affect the
position of this peak but did improve the resclution and dynamic range.
This conclusion is illustrated in Pigure 3 which shows spectra derived
from 2,8 and 32 iterations on 64 data points sampled at 256Hz. Note that
for M=32(=N/2) peak splitting occurred; such splitting for long filters
has been reported in the literature {10]. The corresponding variation of
FPE with M is shown in Pigure 4: there is no obvious minimum but a
levalling off occurs at around M=8 and this does correspond to a
reasonable spectrum,

c) The position and width of the peak varied with the number of data
points and with the sampling frequency. This is illustrated in Figure 5
which shows the peak position converging on S50Hz as the number of points
in the sample increased (sampling frequency 3200Hz, M=2). on decreasing
the sampling frequency the convergence became more rapid (Figure 6) such ]
that a true spectrum could be produced with fewer points. Indeed, at the !
Nyquist frequency an accurate (excepting peak height) spectrum could be
Produced with as few as three data points (Pigure 7); However the
reflection of the zero frequency peak at 100Hz shows that aliasing was
occurring. '

The resolution also improved as the peak converged to the correct
frequency.

d) The method was incapable of producing the correct absolute level of
the spectrum. :

The major conclusions from this simple investigation were that MESA ;
cannot be used to give accurate levels. Nethertheless it is capable of
producing a well resolved spectrum (of a sine wave) using very few data
points providing the sampling frequency is low; however on approaching .
the Nyquist frequency aliasing is seen to occur. K

ii) Two adjacent sine waves (1lv 49Hz & S50Hz) F

Pigure 8 shows the ME gpectra derived from a 128 point data set -
sampled at 200Hz to avoid aliasing. It can be seen that four iterations
were insufficient to resolve the peaks while 8 and 32 iterations
resolved two (unequal) peaks at around 49Hz and 51Hz, the latter ¢
frequency being incorrect. On decreagsing the length of the data sample !
to 16 points MESA wags still capable of resolving two peaks (albeit at ;
46Hz and S51Hz ) when 8 iterations were used; however an 8 point data {
sample was insufficient for these to be resolved. ‘
|

The FPE criterion produced similar results as for the single sine
wave and did not provide any guidance as to the best filter length.

i1i)_10Hz 3quare wave '

In ordexr to assess MESA's ability to cope with harmonics, a 10Hz ;
square wave was examined; the majority of tests were performed with a
sampling frequency of 200Hz in order to examine harwonics up to 1Q0Hz.

Pigure 9 shows the analysis results for a 128 point data sample

10




using different filter lengths. Eight iterations were sufficient to
produce a fair representation of the spectrum in that the first four of
the odd harmonics occurred close to the correct frequencies although the
peak heights were subject to variability. The fifth odd harmonic was
only resolved in the case of the long filter. Increasing the number of
iterations improved the resolution. For m=32 peaks were observed at even
harmonics; since these were also observed on performing a PPFT analysis
they were attributed to to the imperfection of the input sine wave,

Application of the FPE criterion proved unhelpful in choosing the
‘best’' filter length to be uged; after 32 iterations no true minimum was
attained (Pigure 10). (Longer filters were not congidered due to the
impracticality of computation time — more than ten minutes were required
to produce a spectrum using N=1268, M=32) Figure 11 shows the ME spectra
of shorter length samples (M=8 in each case) and shows that even with
only 16 data points a representative spectrum can be produced. However
Pigure 12 indicates the importance of choosing a suitable sampling
frequency: Too low a sampling frequency caused aliasing (fg=100Hz)
while at too high a frequency the small data sample only represented a
fraction (<1/2) of a cycle.

The conclusions drawn from this test are that

i) MESA is capable of producing a representative spectrum (in terms of
peak position) of the first few harmonics of a 10Hz square wave even
when using a small data sample. However higher harmonics were not
resolved,

ii) The performance is critically sensitive to the sampling frequency.

iii) The resolution can be improved by using larger data samples but
computation time becowmes impracticable.

iv) Peak levels are incorrect even in relative terms.

v) The PPE criterion offers little guidance in choosing filter length.

iv) Machinery Noige

A 30kW motor was chosen to represent a simple
example of wachinery noise; the ‘true‘’ spectrum (FPT using 512 data
points) for a random run is shown in FPigure 13 (not corrected for
measurement parameters).

The MESA performance on the first 128 of these data points is shown
in Pigure 14 for 64 (N/2 as recommended in (2]), 20 (where FPE levelled
off), and 5 iterations of the prediction error filter. It can be seen
that with only 5 iterations MESA was able to identify the two major
peaks while with M=20 and M=64 minor peaks were also resolved. However
the performance above about 70 Hz was disappointing, a feature also
observed on examination of the square wave. Figure 16 illustrates the
performance of MESA using only 16 data points and shows that the major
peaks could be accurately resolved although minor peaks had dissappeared
due to lack of information., A further test using only 8 data points
succeeded in reeolving the major (30Hz) peak accurately and exhibited a
second peak at around 70HZ ( instead of 60Hz)

5 1 1 -
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6 COMPARISON WITH PFT FOR FEW DATA POINTS

A short program was implemented on the GENRAD 2508 to determine the
auto-power apectrum by applying the FFT to small samples of data points.
In order to preserve the resolution of the output spectrum zero packing
was utilised (viz the PFT was performed on a 128 point array
incorporating N data points, all other elements being set to zero).

Results for the 50Hz sine wave and 10Hz square wave are shown in
Pigure 17 for 16, 32 and 64 data points, both waves being sampled at

200Hz.

Comparing these figures with those derived using MESA (Pigures &, 7,
and 9) it can be seen that the MESA performance is by far the more
satisfactory when only 16 or 32 data points are present in that peaks
can be easily resolved; for 64 points MESA improves on the dynamic range

and resolution.

7 SIGNAL VARIANCE — DISCUSSION

Referring to equation 3 the ME power spectrum can he seen to be the
result of

Error power spectrum level
15

P(f) = 2
| P.T. of prediction error filter |

Thus in order for peaks to be abserved in P(f) the Fourier tranaform
mugst exhibit minima. The peak amplitude is therefore a result of a
limiting process in which both the error power and Fourier transform
tend to zero but in such a way that the power spectrum level remains
finite.

This probably explains in part the large variation observed in the
amplitudes. This is also commented on in (2] as being associated with

harmonic signals.

A second source of variance arises from rounding errors. These are
particularly troublesome in the determination of the error power P,
(equation 10) when ag, tends to unity. This would occur (see equation
A2.6) when bye =bye which is effectively saying that forward and
backward predictors give the same output as would occur if the sampling
points were symmetric in the signal. (This would only be true of a
noiseless signal which would be unlikely in practice.)

8 CONCLUSIONS

MESA has been shown to be a viable means of analysing data provided
suitable sampling frequencies and filter lengths are chosen. However a
major shortcoming is that the levels derived are extremely variable.
Prequency shifting can occur but can be reduced by choosing a sampling
frequency close to the Nyquist frequency. Spectral resolution is
improved by increasing the length of the prediction error filter;
however if this filter is too long spurious peaks can be produced.

12
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. Akaike's PPE criterion did not prove particularly helpful as a guide to
filter length in any of the examples considered - no clear minima
occured while the value of M following a rapid decrease in FPE seemed as
good a choice as any.

when long data samples are available MESA offers no advantages over
the conventional FPT means of analysis: the spectra are of poor quality,
do not provide reliable absolute levels, and their execution is
unacceptably slow. However, when only few data points are available MESA
has definate advantages in that major peaks can be clearly resolved
although reservation is recommended with regard their position.

e

In the context of time series analysis of machinery noise MESA is
unlikely to be of practicable value since data samples can generally he
made sufficiently long to allow conventional analysis. However for
problems involving spatial analysis where long data samples are
inconvenient if not impossible, MESA provides a potentially useful tool.
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APPENDIX 1
MAXIMUM ENTROPY POWER SPECTRUM

The entropy for a stationary Gaussian process is proportional to

B-Tln[p(f)] af 2
-0

where the power spectrum P(f) must be consistent with the measured
values Rx (k=0 to m) of the auto—correlation function

R]"J.df P(f) exp(2mifkat) Al.1l
with R = Ri—j = Rjj = E[xin]; j = itk
The procedure for minimising H with respect to P(f) in order to

determine P(£f) is described fully in (3]. The method consists in
introducing Lagrange multipliers €y, where €= 61, and demanding that

§(I4+H) = O Al.2
m k 4
where L=t Al.3
9 &

Combining Al1.1,Al1.2 and Al.3,

1 B«
O = 3(L4H) = Jdi S(P(f))[ F(_f') - g ek exp(Zvrikat)]
k=—m

and sgince P(f) is arbitrary:-

m
P(E) = [ £ e; exp( 2mifkat) ]"1 Al.4
K=—m
Imposing the condition that P(£) is positive and integrable it can be
expressed as .
1
E) = < Al.5
A(E) A (F)
where m
NME) = [ Yk exp( 2rifkAat) Al.6
k=0
and e' :-n * Al.7
- y y .
n X=0 k “k+n

Multiplying both sides of Al.5 by A*exp(2mifkat) and integrating in
the upper half plane it is eventually shown by conaidering the
constraint equations Al.l and using the periodicity of A(f) that

" 1
£ Yy, = = 8
Tox11 T ¥ %ko
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or,in matrix notation
(R1(y] = 1/yol8]

where

(R] = 2t 22 ° " 2m -

(1 =1 - and (8] =

whence iyl =% 18l
Yo

Finally, from Al.5 and Al.6

2 2

INEN"2 = A" (en™

-1
L yk exp( -2nifkat)
k=0 :

P(E)

“| o ey 172
2

vwhere 1

(e(£)] =~ .
exp(—-2mi(n—1)fAt)

Prom Al.11 we find

1 -1
= = (R]
Yo 11

Yo

whence
P- at

-2

Kf) -

P. at

f¢ tr17tte1 )T ey 12
Rewriting Al.15 in the form used by (1,5 and 6]

v2 | amiteen?® ecen 17

P(e) = -

n=1

1 -z In oxp( ~2nifnat)

A

2

Rln-'l

m—2

al.1l0

Al.12

Al.13

Al.1%




wvhere Py At = yo2 and ap = ~¥p/¥y are solutions of 4 (viz Al.9); Pp
is known as the power output of the prediction error filter, [a,] and
(R] is the TOEPLITZ matrix (1]:

Ro R1 « e Rm 1 Pm

R1 Ro . e e Rm_1 31 o

. o e . . - . 4
R. Rm_1 .o Ro a (o]

P(£f) is the MAXIMUM ENTROPY solution to the power spectrum.

ARPENDIX 2
ITERATIVE PROCEDURE

The average error power output of a m+l long prediction error filter
(ap)T = [1 ap; - apm] 18 given by (51:
1 N-m n 2 n 2
Pa = Z(vm) ’t:_l [{ X~ zk:TkxtH: } + { *eomo )Ejmkxtm-k } } Az.1
The filter coefficients are given by the recurrance relations (see

Appendix 3)

a _a k<n 9

8 = 3 mm o1 =k

Wk w1k

where ank =0 for k>m.

In order to determine the coefficient ayy, we insert 10 in A2.1 to give

N-m

1 ¢ .2 ¢ 2
P- ——2(._-) E-‘{( b-t- a_b-t) + ( bnt ambnt) ] A2.2
wvhere .
n ]
b = a X = P a x
mt X=~0 w1 k ték X=0 m-1 m-k " t+m-k
' - n A2.3
b =f a x = [ a x
mt X=0 w1 Xk “tim-k X=0 1 Bk t+k
Note bl.t. ‘t and blt- ‘tﬂ A2.4

Since Dye and by, are independent of agy, the minimisation of Py
with respect to ay, gives

1 N-m ] ' 2 2
—_—2(“) E-t —db.tb-tﬂb Zb-t a. + Zb-ta. =0
and hence
N-m , N 2
a =2 b _.b L (D + Db ) A2.5
- t-t't't tm1 nt mt
17




[NB this reduces to equation 9 as required on substituting m=1)
Purthermore, since

2
ap N-m

m 1 ' 2 2 .
——— s ———— [ (Db + Db Yy > O A2.6
!2 (N-m) t=1 mt mt

the extremum is a minimum as required.

Combining A2.1 and A2.2 gives recursion relations for by, and by :

Poat™ Pu-t ¢ ~ 2p-t m-1Pm-1 ¢t
) ) A2.7

Pt™ Paei t41 ~ 2mt 1Pt b4t

ARRENDIX 3

RECURSION RELATIONSHIRS

Considex the equation defining the power output Pp_; using an m
point prediction error filter (cf eq 4):

. P
[ R0 Ry Bpt] [ 2 Pt
R Ro Rm_z —am_:1 1 0
: : : a A3.1
Ro1 R - Ry | "2a~1 m-1 °

Increasing the order of the matrices by 1:

R, R, - R_RJ[ 12 1 P,
Ry ’_‘o < -‘mfl 1 o
. . : = . A3.2
1 m Ro Rl ™1 w1 °
Ra Rai " "Ry Rf | © [ A1)
wWhere -1
An-l.. R- - g_lnn-j‘n-l 3

Meking use of the symmetry of A3.2 the prediction error filter can
be reversed to give:

R, R....R__RI[ © I [ 8]
‘.‘1 R =1 m-1 ?
: . -] A3.3
Ro-1 M Nl "SR 0

. n- ceeeesaes . no‘ ; 1 ‘ p._”

The solution for the w+ith power estimate P, is given Dy equation 4

18
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[ ee s e s e . [ 1
Ro R L Rlll 1l W Pm
R 1 Ro . "‘am 1 0 |
. . : -] . 4 '
] Rlll sassaaes .o RO L_am . (4]

Let the prediction error filter be defined in terms of the (m-1)th

Then equating elements on both sides of A3.4 we find

filter: {
;
1 1 0 ] :
- - - §
%n1 m-1 1 n-1 w1 H
. = . +r A3. 4 '
- - ¥
am—t m-1 m-1 -1 1 1
| -a 0 i. i
| L i
i
-a_=r ‘
_ -
and a’uk- ‘n—l k +r am—l m-k ixm
-al’lk_aﬂall—l mk 3

The corresponding power output is given by

P P

m

o ? as.s

. o

o s, .
whence = Pm-1 ‘.' £ &gy 3

i
and Ap-y + T Ppy =0 b
Hence Pg = Pp-gy - I'2 Py
Pg = Pgpj(1-ady) A3.7
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